Tetrahedron Letters, Vol.27, No.46, pp 5611-5614, 1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain Pergamon Journals Ltd.

NEW ACCESS TO FUNCTIONALIZED DICHLOROPHOSPHINES : SYNTHESIS OF TWO COORDINATED PHOSPHORUS HETEROCYCLES.

Pascal PELLON and Jack HAMELIN*

Groupe de Recherche de Physicochimie Structurale 3, UA CNRS nº 704, Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France.

<u>Summary</u>: An easy access to functionalized dichlorophosphines $\underline{2}, \underline{4}, \underline{5}, \underline{7}$ is described, and these compounds are dehydrochlorinated in situ with DABCO and trapped by a diene or a diazocompound to give phosphabenzenes or diazaphospholes.

Dichlorophosphines bearing a functional group and an hydrogen on the α -carbon atom are scarce in the litterature⁽¹⁾. By dehydrochlorination, these compounds may lead to functionalized phosphaalkenes which may be used as dienophiles or dipolarophiles for the synthesis of new two coordinated phosphorus heterocycles. We report now a new and general access to functionalized dichlorophosphines.

Silylated ketene acetals $\underline{1}^{(2)}$ react at -30° in THF or Et_2^0 with PCl₃ under nitrogen during three hours to give dichlorophosphines $\underline{2}$ with a quantitative yield after removal of the solvent at room temperature under vacuum (Scheme 1).

Scheme 1

These compounds are characterized by ¹H and ³¹P NMR. For instance <u>2a</u>: (³¹P NMR external 85 % H₃PO₄) 185 ppm, d, $J_{PH}^2 = 10$ Hz. ¹H NMR (TMS, lock, CH₂Cl₂): 3.31 (d, 1H, 10 Hz). <u>2a</u> is rather unstable and leads to Cl₂P-C^H₂-CO₂Et on standing 5 days in CDCl_3 at 0° ; <u>2b</u> is very unstable and could not be characterized but as we will see it may be trapped "in situ"; <u>2c</u> and <u>2d</u> are fairly stable.

The reaction was extended to ketodichlorophosphines 4 starting from silyl enol ethers 3 (Scheme 2) but in this case PCl₃ alone does not react at -30°C nor at room temperature. Nevertheless if the reaction is catalyzed by ZnCl₂ at room temperature in THF or Et₂0, 4 is obtained with a 70 % yield together with 30 % of the corresponding ketone.

The reaction with PBr₃ needs no catalyst and leads to $\underline{5}$ in the same conditions with the same yield. The use of two equivalents of PBr₃ gives $\underline{5}$ with a quantitative yield. These compounds are also characterized by NMR (¹H and ³¹P) for example: $\underline{4a}$: (³¹P/H₃PO₄) : 176 ppm, J_{PH}^2 = 12 Hz ; (¹H, CDCl₃, TMS) : 4.2 (d, 2H, J_{PH}^2 = 12 Hz). $\underline{5b}$: (³¹P) : 167 ppm, J_{PH}^2 = 14 Hz ; (¹H, CDCl₃, TMS) : 4.07 (d, 2H, J_{PH}^2 = 14 Hz) ; 2.33 (s, 3H, J = 0.9 Hz).

In the case of the amide function, the lithium carbanion of NN-dimethyl acetamide treated with TMSC1 leads to an exclusive C-silylation to give <u>6</u> which on treatment in THF at room temperature with an equimolar amount of $PC1_3$, gives the dichlorophosphine <u>7</u> with a quantitative yield (Scheme 3).

 $\frac{PCl_3}{Cl_2P-CH_2-CONMe_2} \xrightarrow{PCl_3} Cl_2P-CH_2-CONMe_2 + TMSCl_2$ $\frac{6}{Scheme 3}$

 $7 ({}^{31}P)$: 166 ppm, $J_{PH}^2 = 10 \text{ Hz}$; (1H, CDCl₃, TMS) : 4.08 (d, 2H, $J_{PH}^2 = 10 \text{ Hz}$).

Starting from these readily available dichlorophosphines, we thought that their dehydrochlorination with a base would lead to the corresponding functionalized phosphaalkenes. After various unsuccessful attempts with Et_3N , DBU, we could succeed only in the case of 2a with DABCO in the following way : the ether solution of 2a at -80° is treated with an equimolar amount of DABCO and the reaction is followed by ³¹P NMR, at -60° it appears a signal at 213 ppm which may be attributed to <u>8</u> TMS (EtO_2C)C=PC1 according to the litterature⁽³⁾, then at -40° this signal disappears.

Owing to this instability, we decided to trap the phosphaalkenes in situ by a diene or ethyl diazoacetate according to the litterature which reports examples of Diels Alder and 1,3-dipolar cycloadditions $^{(4,5,6)}$.

The overall reaction is realized in one pot starting from the silylated derivative ; we will take for example <u>la</u> (Scheme 4). <u>la</u> is treated at -30° in ether with an equimolar amount of PCl₃ during 3 hours, then the mixture is cooled to -70° and an equivalent of DABCO in ether is added. After 15 mn, a stoechiometric quantity of the Danishefsky's diene⁽⁷⁾ or ethyl diazoacetate is added and the temperature is set to -50° for 5 hours, then to room temperature during 12 hours. After addition of water, the crude product is extracted with ether, to give the phosphabenzene <u>9</u> or the diazaphosphole <u>10</u>.

These compounds are characterized by NMR $({}^{1}H, {}^{31}P)$ and mass spectrome-

 $\frac{9^{(8)}}{9^{(8)}} F = 135^{\circ}, 70 \% \text{ yield}, \frac{31}{9} (\text{THF/C}_{6}\text{D}_{6}) : 217 \text{ ppm}, J_{PH}^{2} = 38 \text{ Hz}; \frac{1}{9} (\text{CD}_{3})_{2}\text{CO}:$ 8.1 (dd, H_a, $J_{PH}^{2} = 38 \text{ Hz}, J_{HH}^{4} = 2.6 \text{ Hz}); 7.02 (dt, H_b, J_{PH}^{4} = 2.6 \text{ Hz}, J_{HH}^{3} =$ 9.2 Hz; $J_{HH}^{4} = 2.6 \text{ Hz}); 8.47 (dd, H_c, J_{PH}^{3} = 4.2 \text{ Hz}, J_{HH}^{3} = 9.2 \text{ Hz}).$ Mass spectrometry $C_{8}H_{9}O_{3}P$ calculated 184.0289, found 184.0294.

<u>10</u> F = 125°, 80 % yield, ³¹P (THF/C₆D₆) : 118 ppm. Mass spectrometry $C_8H_{11}N_2O_4P$ calculated 230.0456, found 230.0455.

In the same way we prepared and isolated the heterocycles 11 and 12 but the compounds $\underline{13}$ and $\underline{14}$ were only characterized by $\underline{^{31}P}$ and $\underline{^{1}H}$ NMR.

 $\frac{11}{11} \text{ F} = 172^{\circ}, 70 \% \text{ yield}, \frac{31}{P} (D_2 0) : 231 \text{ ppm}, J_{PH}^2 = 38 \text{ Hz}; \frac{1}{H} (CD_3)_2 CO : 8.05 (dd, H_a, J_{PH}^2 = 38 \text{ Hz}, J_{HH}^4 = 2.6 \text{ Hz}); 7.03 (dt, H_b, J_{PH}^4 = 2.6 \text{ Hz}, J_{PH}^3 = 9.2 \text{ Hz}, J_{HH}^4 = 2.6 \text{ Hz}); 8.42 (dd, H_c, J_{PH}^3 = 4.2 \text{ Hz}, J_{HH}^3 = 9.2 \text{ Hz}). \text{ Mass spectrometry}: C_6H_5O_3P \text{ calculated 155.9976, found 155.9974.}$ $\frac{12}{12}$ F = 150°, 60 % yield, $\frac{31}{P}$ (THF/C₆D₆) : 113 ppm. Mass spectrometry : C₈H₁₂N₃O₃P calculated 229.0616, found 229.0615. $\frac{13}{J_{HH}^4} = 2.5 \text{ Hz}; 7.0 \text{ (dt, H}_b, J_{PH}^2 = 38 \text{ Hz}; J_{HH}^3 = 9.2 \text{ Hz}, J_{HH}^4 = 2.5 \text{ Hz}; 7.7 \text{ (dd, H}_c, J_{PH}^3 = 5.0 \text{ Hz}, J_{HH}^3 = 9.2 \text{ Hz}.$ 14 ³¹P (THF/C₆D₆) : 122 ppm.

It has not been possible to isolate primary adducts so the real mechanism of aromatization is not established. We thank Dr. Y.Y.C. Yeung Lam Ko for helpful discussions.

References and Notes

- 1. G. Märkl in "Houben Weyl" Methoden der Organischen Chemie, G. Thieme Verlag, vol. El, 1982.
- 2. Prepared by the method described for analogous compounds by C. Ainsworth and Yu-Neng Kuo, J. Organomet. Chem., 1972, <u>46</u>, 59 and 73.
- 3. R. Appel, F. Knoll and I. Ruppert, Angew. Chem. Int. Ed., 1981, 20, 731.
- 4. G. Märkl, E. Silbereisen and G.Y. Jin, Angew. Chem. Int. Ed., 1982, 21, 370.
- 5. Y.Y.C. Yeung Lam Ko and R. Carrié, J.C.S. Chem. Commun., 1984, 1640.
- 6. B.A. Arbuzov and E.N. Dianova, Phosphorus and Sulfur, 1986, 26, 203.
- 7. S. Danishefsky and T. Kitahara, J. Am. Chem. Soc., 1974, <u>96</u>, 7807.
- 8. P. Pellon, Y.Y.C. Yeung Lam Ko, P. Cosquer, J. Hamelin and R. Carrié, Tetrahedron Letters, 1986, 27, 4299.

(Received in France 23 July 1986)